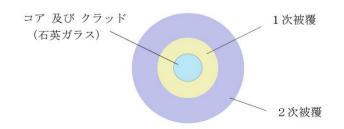
仕 様 書 高屈曲型層型光ファイバケーブル SG-STEB**G-LAP

光ファイバ仕様書	SG-13-F0	11-1Z
高屈曲型層型光ファイバケーブル SG-STEB**G-LAP		2/4

1、適用範囲

本仕様書は、高屈曲型光ファイバ心線(GI)を使用した 高屈曲型層型メタリック光ファイバケーブル(4心,6心,8心)について規定す:

2、関連規格


① JIS	С	3005	「ゴム・プラスチック絶縁電線試験方法」
② JIS	С	6820	「光ファイハ・通則」
③ JIS	С	6822	「マルチモート・光ファイハ・構造パラメータ試験方法」
④ JIS	С	6823	「光ファイバ損失試験方法」
⑤ JIS	С	6824	「マルチモート、光ファイハ・帯域試験方法」
⑥ JIS	С	6831	「光ファイバ心線」
⑦ JIS	С	6832	「石英系マルチモート゛光ファイハ゛素線」

3、構 造

3-1 光ファイバ心線

表 1. 光ファイバ心線の構造

項目	仕 様
ファイバ 種別	石 英 系 ガラス(GI)
コア径	$50 \pm 3 \mu$ m
クラッド 径	$125 \pm 2 \mu$ m
NA	0.20 ± 0.015
コア/クラッド偏心量	3 μ m 以下
コア非円率	6%以下
クラッド非円率	2 % 以下
スクリーニングレベル	1.5 % 以上
被覆	紫外線硬化型樹脂及び熱可塑性樹脂 φ0.9±0.1 mm
曲げ特性	0.25 dB 以下 (φ30×10ターン) (λ=850、1300 nm)

3-2 光ファイバケーブル

光ファイバケーブルの構造を表2に示す。

表 2. 光ファイバケーブルの構造

項目	仕 様
テンションメンバ	防錆処理鋼線(被覆付き) φ1.6mm(標準径)
ケーブル外被	標準厚 1.7mm の 黒色LAPシース
標準外径	φ9 mm ±10 %
集合	テンションメンバの周囲に光ファイバコード及び介在紐を集合し、
	更に緩衝材を挿入する。
押え巻	プラスチックテープ等で押え巻きする。
概算質量	70 kg /km

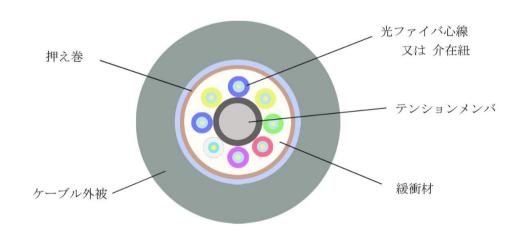


表 3. 光ファイバ心線の配列および識別

SG-STEB**G-LAP

**:心線数

								<u>/1\</u>
光ファイバ	光ファイバ心線番号							
心線数	1	2	3	4	5	6	7	8
4	青	3_4	黄	1000	緑	12 <u>—</u> 28	赤	2440
6	青	黄	緑	-	赤	紫	(III)	-
8	青	黄	緑	赤	紫	自	青	黄

- は介在紐を示し、必要に応じて増減する

光ファイバ仕様書

SG-13-F011-1Z

高屈曲型層型光ファイバケーブル SG-STEB**G-LAP

4/4

4、特性

表 4. 光伝送特性

項目	仕 様	備考
伝 送 損 失	3.0 dB / km 以下	$\lambda = 850 \text{ nm} \qquad (*1)$
	1.0 dB / km 以下	$\lambda = 1300 \text{ nm}$ (*2)
伝 送 帯 域 (*3)	500 MHz·km 以上	$\lambda = 850 \text{ nm}$
	500 MHz·km 以上 <u>介</u>	$\lambda = 1300 \text{ nm}$

(*1) ケーブル長(L:km)により、以下の式を適用する。

 $1 \le L$: 3.0 L (dB 以下) 0.2 $\le L < 1$: 2.875 L + 0.125 (dB 以下) L < 0.2 : 0.7 (dB 以下)

(*2) ケーブル長(L:km)により、以下の式を適用する。

 $1 \le L$: 1.0 L (dB 以下) $0.2 \le L < 1$: 0.875 L + 0.125 (dB 以下) L < 0.2 : 0.3 (dB 以下)

(*3) ケーブル長(L:km)により、以下の式を適用する。

 $1 \le L$: (表4の値)/L (MHz 以上) $0.4 \le L < 1$: (表4の値)/L $^{0.5}$ (MHz 以上) L < 0.4 : (表4の値)/0.4 $^{0.5}$ (MHz 以上)

ただし測定の限界は1GHzとする

表 5. 機械特性

項目		仕 様
許容張力	(*4)	780 N 以下
許容曲げ半径	(*4)	ケーブル布設時 : ケーブル外径の 20倍以上
		ケーブル固定時 : ケーブル外径の 10倍以上
使用温度範囲		- 20 ∼ + 60 °C

(*4)上記値にて布設後、上記の伝送損失値を満足すること

5、標 識

ケーブルの適切な位置に下記の標識を連続表示する。

- ・「 製造社名 (略号) 製造年 EB-1G/C 」
- ・ 1m 毎に レングスマーク
- 6、梱包形態

運搬、保管に耐えるような適切な荷造りをする。

7、注意事項

- ・ドラムを横積みしないでください。
- ・許容張力以上の力で牽引しないでください。
- ・許容半径以下の曲がりやキンク(局所曲げ)を生じないようにしてください。
- ケーブルを捻回させないでください。
- ・テンションメンバやシースを確実に固定してください。
- ・ケーブル内の金属体は帯電することがあるので、帯電対策をしてください。